diff --git a/CFGBoltzmann.py b/CFGBoltzmann.py
index 8821033fd1e9f8c15429031ee46ed2b08be606a8..f4df62d386591422826b1926301f7cbede0f0661 100644
--- a/CFGBoltzmann.py
+++ b/CFGBoltzmann.py
@@ -361,18 +361,36 @@ class CFGBoltzmann:
     def Gzero_shimmed(self, nonterminal, requested_length):
         nonterminal_index = self.nonterminals_ordered.index(nonterminal)
         root_of_tree = TreeNode("START",[])
-        operation_site = []
+        operation_site_index = []
 
-        return (self.Gzero(nonterminal_index, requested_length, 0, root_of_tree, operation_site), root_of_tree)
+        return (self.Gzero(nonterminal_index, requested_length, 0, root_of_tree, operation_site_index), root_of_tree)
 
-    def Gzero(self, nonterminal_index, requested_length, depth, root_of_tree, operation_site):
+    def Gzero(self, nonterminal_index, requested_length, depth, root_of_tree, operation_site_index):
         possibilities = self.Fzero(nonterminal_index, requested_length)
         chosen_production = self.normalized_choice(possibilities)
         print("    "* depth +"Gzero entering, with nonterminal", nonterminal_index, "and production rule number", chosen_production)
+        # We already know we will have this nonterminal show up in our derivation tree; so we add it now
+        # First, dereference the location to get the operation site:
+
+        opsite = self.indexes_to_item(root_of_tree, operation_site_index)
+
         generated_string = self.Gprim(nonterminal_index, chosen_production, depth, requested_length, depth)
 
         return generated_string
 
+
+    def indexes_to_item(tree, location):
+        opsite = tree
+        if (location != []):
+            for depth_index in location:
+                opsite = opsite.subnodes[depth_index]
+                #print("TMP index ", depth_index, " gives ",opsite)
+        else:
+            opsite = tree
+
+        return opsite
+
+
     # Like Fprim, Gprim takes a nonterminal index, a production index for the nonterminal,
     # and an index into the production rule (and of course, a requested length).
     # This lets us walk through the production rule symbol by symbol.