Forked from
Hammer / hammer
Up to date with the upstream repository.
-
Sven M. Hallberg authored
lr.c 17.49 KiB
#include <assert.h>
#include <ctype.h>
#include "../parsers/parser_internal.h"
#include "lr.h"
/* Comparison and hashing functions */
// compare symbols - terminals by value, others by pointer
bool h_eq_symbol(const void *p, const void *q)
{
const HCFChoice *x=p, *y=q;
return (x==y
|| (x->type==HCF_END && y->type==HCF_END)
|| (x->type==HCF_CHAR && y->type==HCF_CHAR && x->chr==y->chr));
}
// hash symbols - terminals by value, others by pointer
HHashValue h_hash_symbol(const void *p)
{
const HCFChoice *x=p;
if(x->type == HCF_END)
return 0;
else if(x->type == HCF_CHAR)
return x->chr * 33;
else
return h_hash_ptr(p);
}
// compare LR items by value
static bool eq_lr_item(const void *p, const void *q)
{
const HLRItem *a=p, *b=q;
if(!h_eq_symbol(a->lhs, b->lhs)) return false;
if(a->mark != b->mark) return false;
if(a->len != b->len) return false;
for(size_t i=0; i<a->len; i++)
if(!h_eq_symbol(a->rhs[i], b->rhs[i])) return false;
return true;
}
// hash LALR items
static inline HHashValue hash_lr_item(const void *p)
{
const HLRItem *x = p;
HHashValue hash = 0;
hash += h_hash_symbol(x->lhs);
for(HCFChoice **p=x->rhs; *p; p++)
hash += h_hash_symbol(*p);
hash += x->mark;
return hash;
}
// compare item sets (DFA states)
bool h_eq_lr_itemset(const void *p, const void *q)
{
return h_hashset_equal(p, q);
}
// hash LR item sets (DFA states) - hash the elements and sum
HHashValue h_hash_lr_itemset(const void *p)
{
HHashValue hash = 0;
H_FOREACH_KEY((const HHashSet *)p, HLRItem *item)
hash += hash_lr_item(item);
H_END_FOREACH
return hash;
}
bool h_eq_transition(const void *p, const void *q)
{
const HLRTransition *a=p, *b=q;
return (a->from == b->from && a->to == b->to && h_eq_symbol(a->symbol, b->symbol));
}
HHashValue h_hash_transition(const void *p)
{
const HLRTransition *t = p;
return (h_hash_symbol(t->symbol) + t->from + t->to); // XXX ?
}
/* Constructors */
HLRItem *h_lritem_new(HArena *a, HCFChoice *lhs, HCFChoice **rhs, size_t mark)
{
HLRItem *ret = h_arena_malloc(a, sizeof(HLRItem));
size_t len = 0;
for(HCFChoice **p=rhs; *p; p++) len++;
assert(mark <= len);
ret->lhs = lhs;
ret->rhs = rhs;
ret->len = len;
ret->mark = mark;
return ret;
}
HLRState *h_lrstate_new(HArena *arena)
{
return h_hashset_new(arena, eq_lr_item, hash_lr_item);
}
HLRTable *h_lrtable_new(HAllocator *mm__, size_t nrows)
{
HArena *arena = h_new_arena(mm__, 0); // default blocksize
assert(arena != NULL);
HLRTable *ret = h_new(HLRTable, 1);
ret->nrows = nrows;
ret->ntmap = h_arena_malloc(arena, nrows * sizeof(HHashTable *));
ret->tmap = h_arena_malloc(arena, nrows * sizeof(HStringMap *));
ret->forall = h_arena_malloc(arena, nrows * sizeof(HLRAction *));
ret->inadeq = h_slist_new(arena);
ret->arena = arena;
ret->mm__ = mm__;
for(size_t i=0; i<nrows; i++) {
ret->ntmap[i] = h_hashtable_new(arena, h_eq_symbol, h_hash_symbol);
ret->tmap[i] = h_stringmap_new(arena);
ret->forall[i] = NULL;
}
return ret;
}
void h_lrtable_free(HLRTable *table)
{
HAllocator *mm__ = table->mm__;
h_delete_arena(table->arena);
h_free(table);
}
HLRAction *h_shift_action(HArena *arena, size_t nextstate)
{
HLRAction *action = h_arena_malloc(arena, sizeof(HLRAction));
action->type = HLR_SHIFT;
action->nextstate = nextstate;
return action;
}
HLRAction *h_reduce_action(HArena *arena, const HLRItem *item)
{
HLRAction *action = h_arena_malloc(arena, sizeof(HLRAction));
action->type = HLR_REDUCE;
action->production.lhs = item->lhs;
action->production.length = item->len;
#ifndef NDEBUG
action->production.rhs = item->rhs;
#endif
return action;
}
// adds 'new' to the branches of 'action'
// returns 'action' if it is already of type HLR_CONFLICT
// allocates a new HLRAction otherwise
HLRAction *h_lr_conflict(HArena *arena, HLRAction *action, HLRAction *new)
{
if(action->type != HLR_CONFLICT) {
HLRAction *old = action;
action = h_arena_malloc(arena, sizeof(HLRAction));
action->type = HLR_CONFLICT;
action->branches = h_slist_new(arena);
h_slist_push(action->branches, old);
h_slist_push(action->branches, new);
} else {
// check if 'new' is already among branches
HSlistNode *x;
for(x=action->branches->head; x; x=x->next) {
if(x->elem == new)
break;
}
// add 'new' if it is not already in list
if(x == NULL)
h_slist_push(action->branches, new);
}
return action;
}
bool h_lrtable_row_empty(const HLRTable *table, size_t i)
{
return (h_hashtable_empty(table->ntmap[i])
&& h_stringmap_empty(table->tmap[i]));
}
/* LR driver */
static
HLREngine *h_lrengine_new_(HArena *arena, HArena *tarena, const HLRTable *table)
{
HLREngine *engine = h_arena_malloc(tarena, sizeof(HLREngine));
engine->table = table;
engine->state = 0;
engine->stack = h_slist_new(tarena);
engine->merged[0] = NULL;
engine->merged[1] = NULL;
engine->arena = arena;
engine->tarena = tarena;
return engine;
}
HLREngine *h_lrengine_new(HArena *arena, HArena *tarena, const HLRTable *table,
const HInputStream *stream)
{
HLREngine *engine = h_lrengine_new_(arena, tarena, table);
engine->input = *stream;
return engine;
}
static const HLRAction *
terminal_lookup(const HLREngine *engine, const HInputStream *stream)
{
const HLRTable *table = engine->table;
size_t state = engine->state;
assert(state < table->nrows);
if(table->forall[state]) {
assert(h_lrtable_row_empty(table, state)); // that would be a conflict
return table->forall[state];
} else {
return h_stringmap_get_lookahead(table->tmap[state], *stream);
}
}
static const HLRAction *
nonterminal_lookup(const HLREngine *engine, const HCFChoice *symbol)
{
const HLRTable *table = engine->table;
size_t state = engine->state;
assert(state < table->nrows);
assert(!table->forall[state]); // contains only reduce entries
// we are only looking for shifts
return h_hashtable_get(table->ntmap[state], symbol);
}
const HLRAction *h_lrengine_action(const HLREngine *engine)
{
return terminal_lookup(engine, &engine->input);
}
static HParsedToken *consume_input(HLREngine *engine)
{
HParsedToken *v;
uint8_t c = h_read_bits(&engine->input, 8, false);
if(engine->input.overrun) { // end of input
v = NULL;
} else {
v = h_arena_malloc(engine->arena, sizeof(HParsedToken));
v->token_type = TT_UINT;
v->uint = c;
v->index = engine->input.pos + engine->input.index - 1;
v->bit_offset = engine->input.bit_offset;
}
return v;
}
// run LR parser for one round; returns false when finished
bool h_lrengine_step(HLREngine *engine, const HLRAction *action)
{
// short-hand names
HSlist *stack = engine->stack;
HArena *arena = engine->arena;
HArena *tarena = engine->tarena;
if(action == NULL)
return false; // no handle recognizable in input, terminate
assert(action->type == HLR_SHIFT || action->type == HLR_REDUCE);
if(action->type == HLR_REDUCE) {
size_t len = action->production.length;
HCFChoice *symbol = action->production.lhs;
// semantic value of the reduction result
HParsedToken *value = h_arena_malloc(arena, sizeof(HParsedToken));
value->token_type = TT_SEQUENCE;
value->seq = h_carray_new_sized(arena, len);
// pull values off the stack, rewinding state accordingly
HParsedToken *v = NULL;
for(size_t i=0; i<len; i++) {
v = h_slist_drop(stack);
engine->state = (uintptr_t)h_slist_drop(stack);
// collect values in result sequence
value->seq->elements[len-1-i] = v;
value->seq->used++;
}
if(v) {
// result position equals position of left-most symbol
value->index = v->index;
value->bit_offset = v->bit_offset;
} else {
// result position is current input position XXX ?
value->index = engine->input.pos + engine->input.index;
value->bit_offset = engine->input.bit_offset;
}
// perform token reshape if indicated
if(symbol->reshape) {
v = symbol->reshape(make_result(arena, value), symbol->user_data);
if(v) {
v->index = value->index;
v->bit_offset = value->bit_offset;
} else {
h_arena_free(arena, value);
}
value = v;
}
// call validation and semantic action, if present
if(symbol->pred && !symbol->pred(make_result(tarena, value), symbol->user_data))
return false; // validation failed -> no parse; terminate
if(symbol->action)
value = symbol->action(make_result(arena, value), symbol->user_data);
// this is LR, building a right-most derivation bottom-up, so no reduce can
// follow a reduce. we can also assume no conflict follows for GLR if we
// use LALR tables, because only terminal symbols (lookahead) get reduces.
const HLRAction *shift = nonterminal_lookup(engine, symbol);
if(shift == NULL)
return false; // parse error
assert(shift->type == HLR_SHIFT);
// piggy-back the shift right here, never touching the input
h_slist_push(stack, (void *)(uintptr_t)engine->state);
h_slist_push(stack, value);
engine->state = shift->nextstate;
// check for success
if(engine->state == HLR_SUCCESS) {
assert(symbol == engine->table->start);
return false;
}
} else {
assert(action->type == HLR_SHIFT);
HParsedToken *value = consume_input(engine);
h_slist_push(stack, (void *)(uintptr_t)engine->state);
h_slist_push(stack, value);
engine->state = action->nextstate;
}
return true;
}
HParseResult *h_lrengine_result(HLREngine *engine)
{
// parsing was successful iff the engine reaches the end state
if(engine->state == HLR_SUCCESS) {
// on top of the stack is the start symbol's semantic value
assert(!h_slist_empty(engine->stack));
HParsedToken *tok = engine->stack->head->elem;
HParseResult *res = make_result(engine->arena, tok);
res->bit_length = (engine->input.pos + engine->input.index) * 8;
return res;
} else {
return NULL;
}
}
HParseResult *h_lr_parse(HAllocator* mm__, const HParser* parser, HInputStream* stream)
{
HLRTable *table = parser->backend_data;
if(!table)
return NULL;
HArena *arena = h_new_arena(mm__, 0); // will hold the results
HArena *tarena = h_new_arena(mm__, 0); // tmp, deleted after parse
HLREngine *engine = h_lrengine_new(arena, tarena, table, stream);
// out-of-memory handling
jmp_buf except;
h_arena_set_except(arena, &except);
h_arena_set_except(tarena, &except);
if(setjmp(except)) {
h_delete_arena(arena);
h_delete_arena(tarena);
return NULL;
}
// iterate engine to completion
while(h_lrengine_step(engine, h_lrengine_action(engine)));
HParseResult *result = h_lrengine_result(engine);
if(!result)
h_delete_arena(arena);
h_delete_arena(tarena);
return result;
}
void h_lr_parse_start(HSuspendedParser *s)
{
HLRTable *table = s->parser->backend_data;
assert(table != NULL);
HArena *arena = h_new_arena(s->mm__, 0); // will hold the results
HArena *tarena = h_new_arena(s->mm__, 0); // tmp, deleted after parse
HLREngine *engine = h_lrengine_new_(arena, tarena, table);
s->backend_state = engine;
}
// cf. comment before run_trace in regex.c
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#pragma GCC diagnostic ignored "-Wclobbered"
#endif
bool h_lr_parse_chunk(HSuspendedParser* s, HInputStream *stream)
{
HLREngine *engine = s->backend_state;
engine->input = *stream;
bool run = true;
// out-of-memory handling
jmp_buf except;
h_arena_set_except(engine->arena, &except);
h_arena_set_except(engine->tarena, &except);
if(setjmp(except)) {
run = false; // done immediately
assert(engine->state != HLR_SUCCESS); // h_parse_finish will return NULL
}
while(run) {
// check input against table to determine which action to take
const HLRAction *action = h_lrengine_action(engine);
if(action == NEED_INPUT) {
// XXX assume lookahead 1
assert(engine->input.length - engine->input.index == 0);
break;
}
// execute action
run = h_lrengine_step(engine, action);
if(engine->input.overrun && !engine->input.last_chunk)
break;
}
h_arena_set_except(engine->arena, NULL);
h_arena_set_except(engine->tarena, NULL);
*stream = engine->input;
return !run; // done if engine no longer running
}
// Reenable -Wclobber
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
HParseResult *h_lr_parse_finish(HSuspendedParser *s)
{
HLREngine *engine = s->backend_state;
HParseResult *result = h_lrengine_result(engine);
if(!result)
h_delete_arena(engine->arena);
h_delete_arena(engine->tarena);
return result;
}
/* Pretty-printers */
void h_pprint_lritem(FILE *f, const HCFGrammar *g, const HLRItem *item)
{
h_pprint_symbol(f, g, item->lhs);
fputs(" ->", f);
HCFChoice **x = item->rhs;
HCFChoice **mark = item->rhs + item->mark;
if(*x == NULL) {
fputc('.', f);
} else {
while(*x) {
if(x == mark)
fputc('.', f);
else
fputc(' ', f);
if((*x)->type == HCF_CHAR) {
// condense character strings
fputc('"', f);
h_pprint_char(f, (*x)->chr);
for(x++; *x; x++) {
if(x == mark)
break;
if((*x)->type != HCF_CHAR)
break;
h_pprint_char(f, (*x)->chr);
}
fputc('"', f);
} else {
h_pprint_symbol(f, g, *x);
x++;
}
}
if(x == mark)
fputs(".", f);
}
}
void h_pprint_lrstate(FILE *f, const HCFGrammar *g,
const HLRState *state, unsigned int indent)
{
bool first = true;
H_FOREACH_KEY(state, HLRItem *item)
if(!first)
for(unsigned int i=0; i<indent; i++) fputc(' ', f);
first = false;
h_pprint_lritem(f, g, item);
fputc('\n', f);
H_END_FOREACH
}
static void pprint_transition(FILE *f, const HCFGrammar *g, const HLRTransition *t)
{
fputs("-", f);
h_pprint_symbol(f, g, t->symbol);
fprintf(f, "->%zu", t->to);
}
void h_pprint_lrdfa(FILE *f, const HCFGrammar *g,
const HLRDFA *dfa, unsigned int indent)
{
for(size_t i=0; i<dfa->nstates; i++) {
unsigned int indent2 = indent + fprintf(f, "%4zu: ", i);
h_pprint_lrstate(f, g, dfa->states[i], indent2);
for(HSlistNode *x = dfa->transitions->head; x; x = x->next) {
const HLRTransition *t = x->elem;
if(t->from == i) {
for(unsigned int i=0; i<indent2-2; i++) fputc(' ', f);
pprint_transition(f, g, t);
fputc('\n', f);
}
}
}
}
void pprint_lraction(FILE *f, const HCFGrammar *g, const HLRAction *action)
{
switch(action->type) {
case HLR_SHIFT:
if(action->nextstate == HLR_SUCCESS)
fputs("s~", f);
else
fprintf(f, "s%zu", action->nextstate);
break;
case HLR_REDUCE:
fputs("r(", f);
h_pprint_symbol(f, g, action->production.lhs);
fputs(" -> ", f);
#ifdef NDEBUG
// if we can't print the production, at least print its length
fprintf(f, "[%zu]", action->production.length);
#else
HCFSequence seq = {action->production.rhs};
h_pprint_sequence(f, g, &seq);
#endif
fputc(')', f);
break;
case HLR_CONFLICT:
fputc('!', f);
for(HSlistNode *x=action->branches->head; x; x=x->next) {
HLRAction *branch = x->elem;
assert(branch->type != HLR_CONFLICT); // no nesting
pprint_lraction(f, g, branch);
if(x->next) fputc('/', f); // separator
}
break;
default:
assert_message(0, "not reached");
}
}
static void valprint_lraction(FILE *file, void *env, void *val)
{
const HLRAction *action = val;
const HCFGrammar *grammar = env;
pprint_lraction(file, grammar, action);
}
static void pprint_lrtable_terminals(FILE *file, const HCFGrammar *g,
const HStringMap *map)
{
h_pprint_stringmap(file, ' ', valprint_lraction, (void *)g, map);
}
void h_pprint_lrtable(FILE *f, const HCFGrammar *g, const HLRTable *table,
unsigned int indent)
{
for(size_t i=0; i<table->nrows; i++) {
for(unsigned int j=0; j<indent; j++) fputc(' ', f);
fprintf(f, "%4zu:", i);
if(table->forall[i]) {
fputc(' ', f);
pprint_lraction(f, g, table->forall[i]);
if(!h_lrtable_row_empty(table, i))
fputs(" !!", f);
}
H_FOREACH(table->ntmap[i], HCFChoice *symbol, HLRAction *action)
fputc(' ', f); // separator
h_pprint_symbol(f, g, symbol);
fputc(':', f);
pprint_lraction(f, g, action);
H_END_FOREACH
fputc(' ', f); // separator
pprint_lrtable_terminals(f, g, table->tmap[i]);
fputc('\n', f);
}
#if 0
fputs("inadeq=", f);
for(HSlistNode *x=table->inadeq->head; x; x=x->next) {
fprintf(f, "%zu ", (uintptr_t)x->elem);
}
fputc('\n', f);
#endif
}
HCFGrammar *h_pprint_lr_info(FILE *f, HParser *p)
{
HAllocator *mm__ = &system_allocator;
fprintf(f, "\n==== G R A M M A R ====\n");
HCFGrammar *g = h_cfgrammar_(mm__, h_desugar_augmented(mm__, p));
if (g == NULL) {
fprintf(f, "h_cfgrammar failed\n");
return NULL;
}
h_pprint_grammar(f, g, 0);
fprintf(f, "\n==== D F A ====\n");
HLRDFA *dfa = h_lr0_dfa(g);
if (dfa) {
h_pprint_lrdfa(f, g, dfa, 0);
} else {
fprintf(f, "h_lalr_dfa failed\n");
}
fprintf(f, "\n==== L R ( 0 ) T A B L E ====\n");
HLRTable *table0 = h_lr0_table(g, dfa);
if (table0) {
h_pprint_lrtable(f, g, table0, 0);
} else {
fprintf(f, "h_lr0_table failed\n");
}
h_lrtable_free(table0);
return g;
}