Forked from
Hammer / hammer
542 commits behind the upstream repository.
-
Sven M. Hallberg authored
llk.c 12.90 KiB
#include <assert.h>
#include "../internal.h"
#include "../cfgrammar.h"
#include "../parsers/parser_internal.h"
static const size_t DEFAULT_KMAX = 1;
/* Generating the LL(k) parse table */
/* Maps each nonterminal (HCFChoice) of the grammar to a HStringMap that
* maps lookahead strings to productions (HCFSequence).
*/
typedef struct HLLkTable_ {
HHashTable *rows;
HCFChoice *start; // start symbol
HArena *arena;
HAllocator *mm__;
} HLLkTable;
/* Interface to look up an entry in the parse table. */
const HCFSequence *h_llk_lookup(const HLLkTable *table, const HCFChoice *x,
const HInputStream *stream)
{
const HStringMap *row = h_hashtable_get(table->rows, x);
assert(row != NULL); // the table should have one row for each nonterminal
assert(!row->epsilon_branch); // would match without looking at the input
// XXX cases where this could be useful?
return h_stringmap_get_lookahead(row, *stream);
}
/* Allocate a new parse table. */
HLLkTable *h_llktable_new(HAllocator *mm__)
{
// NB the parse table gets an arena separate from the grammar so we can free
// the latter after table generation.
HArena *arena = h_new_arena(mm__, 0); // default blocksize
assert(arena != NULL);
HHashTable *rows = h_hashtable_new(arena, h_eq_ptr, h_hash_ptr);
assert(rows != NULL);
HLLkTable *table = h_new(HLLkTable, 1);
assert(table != NULL);
table->mm__ = mm__;
table->arena = arena;
table->rows = rows;
return table;
}
void h_llktable_free(HLLkTable *table)
{
if(table == NULL)
return;
HAllocator *mm__ = table->mm__;
h_delete_arena(table->arena);
h_free(table);
}
void *const CONFLICT = (void *)(uintptr_t)(-1);
// helper for stringmap_merge
static void *combine_entries(HHashSet *workset, void *dst, const void *src)
{
assert(dst != NULL);
assert(src != NULL);
if(dst == CONFLICT) { // previous conflict
h_hashset_put(workset, src);
} else if(dst != src) { // new conflict
h_hashset_put(workset, dst);
h_hashset_put(workset, src);
dst = CONFLICT;
}
return dst;
}
// add the mappings of src to dst, marking conflicts and adding the conflicting
// values to workset.
// note: reuses parts of src to build dst!
static void stringmap_merge(HHashSet *workset, HStringMap *dst, HStringMap *src)
{
assert(src->arena == dst->arena);
if(src->epsilon_branch) {
if(dst->epsilon_branch)
dst->epsilon_branch =
combine_entries(workset, dst->epsilon_branch, src->epsilon_branch);
else
dst->epsilon_branch = src->epsilon_branch;
} else {
// if there is a non-conflicting value on the left (dst) side, it means
// that prediction is already unambiguous. we can drop the right (src)
// side we were going to extend with.
if(dst->epsilon_branch && dst->epsilon_branch != CONFLICT)
return;
}
if(src->end_branch) {
if(dst->end_branch)
dst->end_branch =
combine_entries(workset, dst->end_branch, src->end_branch);
else
dst->end_branch = src->end_branch;
}
// iterate over src->char_branches
const HHashTable *ht = src->char_branches;
for(size_t i=0; i < ht->capacity; i++) {
for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if(hte->key == NULL)
continue;
HCharKey c = (HCharKey)hte->key;
HStringMap *src_ = hte->value;
if(src_) {
HStringMap *dst_ = h_hashtable_get(dst->char_branches, (void *)c);
if(dst_)
stringmap_merge(workset, dst_, src_);
else
h_hashtable_put(dst->char_branches, (void *)c, src_);
}
}
}
}
/* Generate entries for the productions of A in the given table row. */
static int fill_table_row(size_t kmax, HCFGrammar *g, HStringMap *row,
const HCFChoice *A)
{
HHashSet *workset;
// initialize working set to the productions of A
workset = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr);
for(HCFSequence **s = A->seq; *s; s++)
h_hashset_put(workset, *s);
// run until workset exhausted or kmax hit
size_t k;
for(k=1; k<=kmax; k++) {
// allocate a fresh workset for the next round
HHashSet *nextset = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr);
// iterate over the productions in workset...
const HHashTable *ht = workset;
for(size_t i=0; i < ht->capacity; i++) {
for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if(hte->key == NULL)
continue;
HCFSequence *rhs = (void *)hte->key;
assert(rhs != NULL);
assert(rhs != CONFLICT); // just to be sure there's no mixup
// calculate predict set; let values map to rhs
HStringMap *pred = h_predict(k, g, A, rhs);
h_stringmap_replace(pred, NULL, rhs);
// merge predict set into the row
// accumulates conflicts in new workset
stringmap_merge(nextset, row, pred);
}
}
// switch to the updated workset
h_hashset_free(workset);
workset = nextset;
// if the workset is empty, row is without conflict; we're done
if(h_hashset_empty(workset))
break;
// clear conflict markers for next iteration
h_stringmap_replace(row, CONFLICT, NULL);
}
h_hashset_free(workset);
return (k>kmax)? -1 : 0;
}
/* Generate the LL(k) parse table from the given grammar.
* Returns -1 on error, 0 on success.
*/
static int fill_table(size_t kmax, HCFGrammar *g, HLLkTable *table)
{
table->start = g->start;
// iterate over g->nts
size_t i;
HHashTableEntry *hte;
for(i=0; i < g->nts->capacity; i++) {
for(hte = &g->nts->contents[i]; hte; hte = hte->next) {
if(hte->key == NULL)
continue;
const HCFChoice *a = hte->key; // production's left-hand symbol
assert(a->type == HCF_CHOICE);
// create table row for this nonterminal
HStringMap *row = h_stringmap_new(table->arena);
h_hashtable_put(table->rows, a, row);
if(fill_table_row(kmax, g, row, a) < 0) {
// unresolvable conflicts in row
// NB we don't worry about deallocating anything, h_llk_compile will
// delete the whole arena for us.
return -1;
}
}
}
return 0;
}
int h_llk_compile(HAllocator* mm__, HParser* parser, const void* params)
{
size_t kmax = params? (uintptr_t)params : DEFAULT_KMAX;
assert(kmax>0);
// Convert parser to a CFG. This can fail as indicated by a NULL return.
HCFGrammar *grammar = h_cfgrammar(mm__, parser);
if(grammar == NULL)
return -1; // -> Backend unsuitable for this parser.
// TODO: eliminate common prefixes
// TODO: eliminate left recursion
// TODO: avoid conflicts by splitting occurances?
// generate table and store in parser->backend_data.
HLLkTable *table = h_llktable_new(mm__);
if(fill_table(kmax, grammar, table) < 0) {
// the table was ambiguous
h_cfgrammar_free(grammar);
h_llktable_free(table);
return -1;
}
parser->backend_data = table;
// free grammar and its arena.
// desugared parsers (HCFChoice and HCFSequence) are unaffected by this.
h_cfgrammar_free(grammar);
return 0;
}
void h_llk_free(HParser *parser)
{
HLLkTable *table = parser->backend_data;
h_llktable_free(table);
parser->backend_data = NULL;
parser->backend = PB_PACKRAT;
}
/* LL(k) driver */
HParseResult *h_llk_parse(HAllocator* mm__, const HParser* parser, HInputStream* stream)
{
const HLLkTable *table = parser->backend_data;
assert(table != NULL);
HArena *arena = h_new_arena(mm__, 0); // will hold the results
HArena *tarena = h_new_arena(mm__, 0); // tmp, deleted after parse
HSlist *stack = h_slist_new(tarena);
HCountedArray *seq = h_carray_new(arena); // accumulates current parse result
// in order to construct the parse tree, we delimit the symbol stack into
// frames corresponding to production right-hand sides. since only left-most
// derivations are produced this linearization is unique.
// the 'mark' allocated below simply reserves a memory address to use as the
// frame delimiter.
// nonterminals, instead of being popped and forgotten, are put back onto the
// stack below the mark to tell us which validations and semantic actions to
// execute on their corresponding result.
// also on the stack below the mark, we store the previously accumulated
// value for the surrounding production.
void *mark = h_arena_malloc(tarena, 1);
// initialize with the start symbol on the stack.
h_slist_push(stack, table->start);
// when we empty the stack, the parse is complete.
while(!h_slist_empty(stack)) {
// pop top of stack for inspection
HCFChoice *x = h_slist_pop(stack);
assert(x != NULL);
if(x != mark && x->type == HCF_CHOICE) {
// x is a nonterminal; apply the appropriate production and continue
// push stack frame
h_slist_push(stack, seq); // save current partial value
h_slist_push(stack, x); // save the nonterminal
h_slist_push(stack, mark); // frame delimiter
// open a fresh result sequence
seq = h_carray_new(arena);
// look up applicable production in parse table
const HCFSequence *p = h_llk_lookup(table, x, stream);
if(p == NULL)
goto no_parse;
// an infinite loop case that shouldn't happen
assert(!p->items[0] || p->items[0] != x);
// push production's rhs onto the stack (in reverse order)
HCFChoice **s;
for(s = p->items; *s; s++);
for(s--; s >= p->items; s--)
h_slist_push(stack, *s);
continue; // no result to record
}
// the top of stack is such that there will be a result...
HParsedToken *tok; // will hold result token
tok = h_arena_malloc(arena, sizeof(HParsedToken));
tok->index = stream->index;
tok->bit_offset = stream->bit_offset;
if(x == mark) {
// hit stack frame boundary...
// wrap the accumulated parse result, this sequence is finished
tok->token_type = TT_SEQUENCE;
tok->seq = seq;
// recover original nonterminal and result sequence
x = h_slist_pop(stack);
seq = h_slist_pop(stack);
// tok becomes next left-most element of higher-level sequence
}
else {
// x is a terminal or simple charset; match against input
// consume the input token
uint8_t input = h_read_bits(stream, 8, false);
switch(x->type) {
case HCF_END:
if(!stream->overrun)
goto no_parse;
h_arena_free(arena, tok);
tok = NULL;
break;
case HCF_CHAR:
if(input != x->chr)
goto no_parse;
tok->token_type = TT_UINT;
tok->uint = x->chr;
break;
case HCF_CHARSET:
if(stream->overrun)
goto no_parse;
if(!charset_isset(x->charset, input))
goto no_parse;
tok->token_type = TT_UINT;
tok->uint = input;
break;
default: // should not be reached
assert_message(0, "unknown HCFChoice type");
goto no_parse;
}
}
// 'tok' has been parsed; process it
// perform token reshape if indicated
if(x->reshape)
tok = (HParsedToken *)x->reshape(make_result(arena, tok), x->user_data);
// call validation and semantic action, if present
if(x->pred && !x->pred(make_result(tarena, tok), x->user_data))
goto no_parse; // validation failed -> no parse
if(x->action)
tok = (HParsedToken *)x->action(make_result(arena, tok), x->user_data);
// append to result sequence
h_carray_append(seq, tok);
}
// since we started with a single nonterminal on the stack, seq should
// contain exactly the parse result.
assert(seq->used == 1);
h_delete_arena(tarena);
return make_result(arena, seq->elements[0]);
no_parse:
h_delete_arena(tarena);
h_delete_arena(arena);
return NULL;
}
HParserBackendVTable h__llk_backend_vtable = {
.compile = h_llk_compile,
.parse = h_llk_parse,
.free = h_llk_free
};
// dummy!
int test_llk(void)
{
/* for k=2:
S -> A | B
A -> X Y a
B -> Y b
X -> x | ''
Y -> y -- for k=3 use "yy"
*/
HParser *X = h_optional(h_ch('x'));
HParser *Y = h_sequence(h_ch('y'), h_ch('y'), NULL);
HParser *A = h_sequence(X, Y, h_ch('a'), NULL);
HParser *B = h_sequence(Y, h_ch('b'), NULL);
HParser *p = h_choice(A, B, NULL);
HCFGrammar *g = h_cfgrammar(&system_allocator, p);
if(g == NULL) {
fprintf(stderr, "h_cfgrammar failed\n");
return 1;
}
h_pprint_grammar(stdout, g, 0);
printf("derive epsilon: ");
h_pprint_symbolset(stdout, g, g->geneps, 0);
printf("first(A) = ");
h_pprint_stringset(stdout, h_first(3, g, g->start), 0);
// printf("follow(C) = ");
// h_pprint_stringset(stdout, h_follow(3, g, h_desugar(&system_allocator, NULL, c)), 0);
if(h_compile(p, PB_LLk, (void *)3)) {
fprintf(stderr, "does not compile\n");
return 2;
}
HParseResult *res = h_parse(p, (uint8_t *)"xyya", 4);
if(res)
h_pprint(stdout, res->ast, 0, 2);
else
printf("no parse\n");
return 0;
}